

De Montfort University,
Faculty of Computing

Engineering Media and
Niels Brock, Copenhagen

Business College

BSc (Hons)
Computer Science

G41051
Curriculum

2023/24

The aim of the undergraduate degree, Computer Science, is to provide the students with modern approaches to software
systems development. A mixture of both theory and practice is covered with an emphasis on "why" as well as "what".
Students are encouraged to develop critical thinking and problem-solving skills. A practical element gives students the
experience needed to develop software systems using modern languages and environments. An example of this is the final
year project which gives students the opportunity to apply all stages of a software development method to produce a
software system, guided by a project tutor. As well as all the technical aspects of the course, students learn about the
structure of organisations, gaining an insight into the commercial context in which IT systems are commissioned and
deployed. Students are also introduced to computing ethics and law.

The first year’s syllabus focusses on basic concepts of Computer Science like Computer architecture, Operating systems,
Computer networks, Programming, Security etc. The second year’s syllabus focusses on more advanced concepts like
Object-oriented software design and programming, Data structures and algorithms, Concurrent and parallel algorithms,
Agile team project development etc. The third year is a specialisation year covering consepts like Big data and machine
learning, Software design methods (including commercial, professional, ethical and legal considerations) and with a
possibility to select an elective course covering “up-to-date” concepts like Functional Programming, Web Development,
Fuzzy Logic and Data protection. The three years are organised in 4 courses each year, each running in seven-week blocks.

Upon completion of the undergraduate degree, students should be able to:

• Apply the theoretical knowledge and practical experience they have learnt to each phase of the software
lifecycle.

• Be able to describe the role of computer technology within business organisations.
• Evaluate and recommend appropriate computer systems.
• Recommend an appropriate implementation strategy.
• Demonstrate knowledge and understanding of areas in computing at the forefront of the discipline.
• Appreciate the relative merits and limitations of different computing environments, paradigms and

methodologies.

The subject specific aims are listed in the following module descriptions.

In addition, participants will also gain a number of cognitive skills. These include:

• Capacity for appreciation of the complexity of Computer Science
Critical evaluation and reflection of theoretical and practical issues

• Professional considerations related to both developing systems and implementing these in businesses
• Capacity for independent and self-managed learning
• Ability to draw reasoned conclusions
• Communication skills, be they in writing, as oral presentations etc.

The programme structure is set out in detail below.

Level 4 (Study Year 1)
Core modules:

Module code Module title Credit Value
CTEC1701N Database Design and Implementation 30
CTEC1702N Fundamental Concepts of Computer Science 30
CTEC1703N Computer Programming 30
CTEC1704N Operating Systems and Networks 30

Supplementary (but still mandatory) module:

Module code Module title Credit Value
NB001 Mandatory Academic Workshop 0

Please note that all level 4 modules must be passed before you may proceed to level 5

Level 5 (Study Year 2)
Core modules:

Module code Module title Credit Value
CTEC2710N Object Oriented Design and Development 30
CTEC2711N Data Structures and Algorithms 30
CTEC2712N Web Application Development 30
CTEC2713N Agile Development Team Project 30

Please note that all level 5 modules must be passed before you may proceed to level 6

Level 6 (Study Year 3)
Core modules:

Module code Module title Credit Value
CTEC3701N Software Development: Methods and Standards 30
CTEC3702N Big Data and Machine Learning 30
CTEC3451N Development Project 30

Please note that the modules CTEC3701N and CTEC3702N must be passed before you hand in the development project
(CTEC3451N)

Plus select one of the following:

Module code Module title Credit Value
CTEC3704N Functional Programming 30
CTEC3705N Advanced Web Development 30
IMAT3722N Fuzzy Logic and Inference Systems 30
IMAT3711N Privacy and Data Protection 30

Please note that the module CTEC2712N is a prerequisite for the module CTEC3705N

The modules are described in detail below

Module descriptions Level 4
Database Design and Implementation

Module Code: CTEC1701N Credit Value: 30 Credit Level: Academic Level 4

Module Description
Structured data, held in relational databases, accessed via SQL, supports the information storage requirements of many
companies, organisations, and on-line businesses. In this module the student will learn the fundamentals of how to design
the structure of data within a relational database, how to interact with data within the database, and how to protect the
data within the database.

Topics include: The relational model, top-down modelling of business requirements, ER model, keys, relationships, traps,
normalisation, SQL mapping schema to implementation via DDL, querying data using DML, integrity, transactions, access
control and security, introduction to big data, semi-structured and unstructured data. Relevant elements of the Data
Protection Act 2018 (DPA 2018) and the General Data Protection Regulations 2016 (GDPR) will be introduced, developing
knowledge and understanding of the various ‘rights and freedoms’ that they provide. This will build to develop knowledge
of a Data Protection Impact Assessment (DPIA), which is now a legal requirement whenever a proposed data processing
need is perceived as ‘risky’ such as, inter alia, mass surveillance, use of sensitive data and automated decision making.

Learning outcomes

1. Derive a suitably normalised database design that reflects the business requirements of a typical corporate
scenario. (Online Test 1 & Online Test 2)

2. Implement a database design via a Relational Database Management System addressing business use cases,
information integrity and information security. (Online Test 1 & Online Test 2)

3. Acquire an understanding of big data and differentiate structured, semi-structured and unstructured data.
(Online Test 2)

4. Demonstrate a sound understanding and ability to locate and use primary and secondary sources. (Report)
5. Identify and implement privacy tools in the design of database. (Report)

Assessment

Assessment Notes
The online phase tests will be anonymous and accessible. They will provide efficient & reliable marking, immediate
feedback, and will be plagiarism limited. The tests will be semi-open book by allowing students to prepare a database
design for a given scenario and become familiar with test data in advance of the test and then access and interpret their
prepared design and the test data during the test to answer questions. Students are encouraged to work in small groups
to prepare the design but must interpret and answer the test questions individually. The students apply their knowledge
of the database language by dry running database commands against the test data which they can practice in advance
from lab exercises. This more open approach to the test incorporates this coursework style element and leads to more

extended, structured, and responsible learning. To give this further support, formative coursework, scenarios, self-
evaluation criteria and solutions are issued in advance of the test. The law related component will be assessed by means
of a 1000 word written piece that comprises a business report to a senior manager in your organisation that presents a
new DPIA. Students should strive to write an accurate, concise, and cogent Data Protection Impact Assessment that is
based on a supplied scenario. One phase test may be re-attempted (optionally) within the module delivery period. If an
optional second attempt is taken, then the higher mark of the two attempts for that phase test will be recorded.

Expected Methods of Delivery
Workshops will be used to introduce and demonstrate key practical and theoretical concepts.
Practical programming skill will be gained in regular laboratory sessions. Some sessions may be used for consolidation,
revision, and to discuss solutions to practical problems.

Workshop 42 hours
Practical 20 hours
Seminar 4 hours
Self-directed study 76 hours
Consolidation 68 hours
Reading 30 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

The two recommended books are expected to be the basic literature

Fundamental Concepts of Computer Science
Module Code: CTEC1702N Credit Value: 30 Credit Level: Academic Level 4

Module Description
This module introduces students to fundamental concepts in computer science in relevant areas of mathematics
(including propositional logic, set notation, etc); software modelling; the software lifecycle; requirements capture; user
interface design; and the foundations of ethical thinking. These topics can then be applied and further developed as
students progress throughout the course.

The module starts by introducing mathematical structures that provide a basis for computer science including logic, set
theory, probability, and statistics. More specifically, logic sets, tuples, relations, functions, probability, hypothesis
generation and testing, and matrices are covered.

After this, students are taught about fundamental principles in areas of the software life cycle, including requirements
capture and user interface design. Developing an understanding of requirements analysis will include how to formulate
functional requirements, the various kinds of non-functional requirements, and usability requirements, as well as how to
carry out interviews and questionnaires and formulate appropriate questions. Discussions of the software lifecycle include
the range of different activities involved in a software development project and some different ways in which these
activities can be sequenced, as well as the central importance of designing around user needs and capabilities and
integrating user consultation and user testing into the development process.

Students then move onto developing their understanding in topics surrounding the foundations of ethical thinking. There
is an introduction to ethical theories and concepts related to information systems, information security, software
engineering, computer science and digital forensics. This includes examining the key issues affecting the development of
future ICTs (privacy, security, etc). The material is complemented by understanding the responsibilities of the computer
professional, including professional codes of conduct and codes of ethics (e.g. IEEE, ACM, BCS).

Learning outcomes

1. Construct and manipulate propositional logic statements. (Online Test)
2. Construct and manipulate set-theoretical mathematical objects. (Online Test)
3. Undertake probabilistic calculations and perform hypothesis testing. (Online Test)
4. Demonstrate an understanding of the different kinds of requirements software systems need to meet, and the

ability to formulate appropriate requirements. (Portfolio)
5. Demonstrate an outline understanding of the software development lifecycle including the basic principles of

user centered design and awareness of contrasting approaches to structuring the development process.
(Portfolio)

6. Demonstrate understanding of key theories and current ethical concerns in information systems and computing,
including professionalism and codes of ethics. (Case study analysis)

Assessment

Assessment
Unit Of

Duration Duration
Individ'n

Weighting

Final
Assm't

(X = Yes)

Minimum
Threshold

Mark

Essential
Component (X

= Yes)
Anon. Marking Code

Online Test 1 HRS 0.7 50 AM

Portfolio HRS 12 30 OPTO2
Case Study WRD 1000 20 X AM

Anonymous marking exemption codes: OPTO1: Individually distinct work; OPTO2: Reflection on development of own work; OPTO3:

Presentation; OPTO4: individually negotiated work; OPTO5: work placement/experience/assessment

Assessment Notes
Online tests are appropriate for the maths work and enable an integrated assessment. Practice tests will be made
available in advance so students can prepare fully for the type of assessment. One phase test may be re-attempted
(optionally) within the module delivery period. If an optional second attempt is taken, then the higher mark of the two
attempts for that phase test will be recorded. The assessment of students’ understanding of essential aspects of the
software development process will involve the production of design documents based on a case study, that involve the
application of analysis and design skills. The assessment for the ethics material is in the form of a case study analysis of a
current issue/case surrounding the associated topics delivered on the module.

Expected Methods of Delivery
Workshops will be used to introduce the main topics. To gain full advantage of this module students are expected to hone
their skills and understanding by working through progressive exercises. The exercises range from drill to problem solving
tasks. The exercises provide the basis of tutorial seminar and laboratory work. Students are expected to complete
exercises in their own time. In seminars students receive feedback on their progress and engage in discussions on issues
arising from the exercises.

Workshop 42 hours
Seminar 24 hours
Self-directed study 66 hours
Consolidation 58 hours
Reading 30 hours
Revision 20 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature
There is an extensive reding list for this module because the ethics part includes many articles etc. Students will be guided
through the list in the beginning of the module.

The mathematics part:
• Davis, G., & Pecar, B. (2013). Quantitative methods for decision making using Excel.

Oxford University Press.

• Giannasi, F., & Low, R. (1995). Maths for computing and information technology. Longman.

• Lipschutz, S., & Lipson, M. (2007). Schaum’s outline of discrete mathematics (3rd edition).
McGraw-Hill. https://ebookcentral.proquest.com/lib/dmu/detail.action?docID=6255465

Software lifecycle part:
• Fowler, M. (2004). UML distilled: a brief guide to the standard object modeling language (3rd ed). Addison-Wesley.

http://www.vlebooks.com/vleweb/product/openreader?id=DeMontfort&isbn=9780134865126

The Ethics part (an extensive list – subject to change as new cases come up)

• Ball, K. (2005). Organization, Surveillance and the Body: Towards a Politics of Resistance. Organization, 12(1), 89–108.

https://doi.org/10.1177/1350508405048578

• Barnes, S. B. (2006). A privacy paradox: Social networking in the United States. First Monday, 11(9).
https://doi.org/10.5210/fm.v11i9.1394

• BBC Radio 4 - The Nervous Breakdown of the Internet. (2015, December 1).
http://www.bbc.co.uk/programmes/b06qjzv2

• BBC Radio 4 - The Public Philosopher - Downloads.
https://www.bbc.co.uk/programmes/b01nmlh2/episodes/downloads

• Desai, D. (2013). Beyond Location: Data Security in the 21st Century. Communications of the ACM, 56(1), 34–36.
https://doi.org/10.1145/2398356.2398368

• Eriksson, S., & Helgesson, G. (2005). Potential harms, anonymization and the right to withdraw consent to biobank
research. European Journal of Human Genetics, 13(9), 1071–1076. https://doi.org/10.1038/sj.ejhg.5201458

• Haggerty, K. D., & Ericson, R. V. (2000). The surveillant assemblage. British Journal of Sociology, 51(4), 605–622.
https://doi.org/10.1080/00071310020015280

• Hong, J. I., Ng, J. D., Lederer, S., & Landay, J. A. (2004). Privacy risk models for designing privacy-sensitive ubiquitous
computing systems. Proceedings of the 2004 Conference on Designing Interactive Systems Processes, Practices,
Methods, and Techniques - DIS ’04. https://doi.org/10.1145/1013115.1013129

• Information Commissioner’s Office. (2018). ICO. https://ico.org.uk/

• Iyad Rahwan: What moral decisions should driverless cars make? | TED Talk | TED.com.
https://www.ted.com/talks/iyad_rahwan_what_moral_decisions_should_driverless_cars_make?utm_source=tedcom
share&utm_medium=email&utm_campaign=tedspread--a

• Keshav, S. (2007). How to read a paper. ACM SIGCOMM Computer Communication Review, 37(3), 83–84.
https://doi.org/10.1145/1273445.1273458

• Langheinrich, M. (2001). Privacy by Design — Principles of Privacy-Aware Ubiquitous Systems. In G. D. Abowd, B.
Brumitt, & S. Shafer (Eds.), Ubicomp 2001: ubiquitous computing : International Conference, Atlanta, Georgia, USA,
September 30-October 2, 2001 : proceedings (Vol. 2201, pp. 273–291). Springer.
https://ebookcentral.proquest.com/lib/dmu/reader.action?docID=3072498&ppg=286

• Law, S. (2004). The philosophy gym: 25 short adventures in thinking. Review.

• Leenes, R. E., & Koops, B.-J. (2006). ‘Code’ and Privacy - or How Technology is Slowly Eroding Privacy. In E. J.
Dommering & L. F. Asscher (Eds.), Coding regulation: essays on the normative role of information technology (Vol.
12). T.M.C. Asser. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=661141

• Leenes, R., & Koops, B.-J. (2005). ‘Code’: Privacy’s death or saviour? International Review of Law, Computers &
Technology, 19(3), 329–340. https://doi.org/10.1080/13600860500348572

• Lyon, D. (2014). Surveillance, Snowden, and Big Data: Capacities, consequences, critique. Big Data & Society, 1(2), 1–
13. https://doi.org/10.1177/2053951714541861

• Mann, S., & Ferenbok, J. (2013). New Media and the power politics of sousveillance in a surveillance-dominated
world. Surveillance & Society, 11(1/2), 18–34. https://doi.org/10.24908/ss.v11i1/2.4456

• Mitrou, L., & Karyda, M. (2006). Employees’ privacy vs. employers’ security: Can they be balanced? Telematics and
Informatics, 23(3), 164–178. https://doi.org/10.1016/j.tele.2005.07.003

• Mittelstadt, B. D. (2013). Privacy, Risk and Personal Health Monitoring. ETHICOMP 2013 Conference Proceedings.
https://scholar.google.co.uk/citations?user=tP685zYAAAAJ&hl=en

• Moor, J. H. (1997). Towards a theory of privacy in the information age. ACM SIGCAS Computers and Society, 27(3),
27–32. https://doi.org/10.1145/270858.270866

• Petzold, C. (2008). Annotated Turing: A Guided Tour Through Alan Turing’s Historic Paper on Computability and the
Turing Machine. JohnWiley & Sons, Incorporated.

• Philosophy Bites. https://philosophybites.com/

• Surveillance & society. https://ojs.library.queensu.ca/index.php/surveillance-and-society/

• The Futuremakers podcast | Research | University of Oxford. https://podcasts.ox.ac.uk/series/futuremakers

• Thomas, K. (2014). Privacy implications of online consumer-activity data: an empirical study. Second Workshop on
Society, Privacy and the Semantic Web - Policy and Technology. http://oro.open.ac.uk/41308/

• Thuraisingham, B. (2002). Data mining, national security, privacy and civil liberties. ACM SIGKDD Explorations
Newsletter, 4(2), 1–5. https://doi.org/10.1145/772862.772863

• Dorsey, P. (2000). Top 10 Reasons Why Systems Projects Fail.
https://dulcian.com/articles/dorsey_top10reasonssystemsprojectsfail.pdf

• Wacks, R. (2015). Privacy: a very short introduction (Second edition). Oxford University Press.

• Wilton, R. (2009). What’s happened to PETs? Information Security Technical Report, 14(3), 146–153.
https://doi.org/10.1016/j.istr.2009.10.010

• Wooldridge, M. J. (2020). The road to conscious machines: the story of AI. Pelican Books.

• Zuboff, S. (2019). The age of surveillance capitalism: the fight for a human future at the new frontier of power.
PublicAffairs. http://www.vlebooks.com/vleweb/product/openreader?id=DeMontfort&isbn=9781782832744

Computer Programming
Module Code: CTEC1703N Credit Value: 30 Credit Level: Academic Level 4

Module Description
Computer programming requires the analysis of a problem, the production of requirements, and their translation into a
design that can be executed on a computer. The design phase in particular requires the identification and combination of
appropriate programming abstractions. This module introduces the skills required to develop a computer program to solve
a given problem and does so from the perspective of designing trustworthy software with an emphasis on sound coding
principles and unit testing.

Outline content:
• Practical program design using the control and data abstractions in a contemporary programming language.
• Highlighting techniques and approaches from different computer programming paradigms.
• The importance of good programming practice and the relevance of coding standards.
• The role of problem analysis and program specification across different computer programming paradigms.
• The use of functions in computer programming design and the production of unit tests.
• The role of testing in the software development process.

During the module students should be made aware of important principles of developing trusted software including, e.g.,
naming conventions, initialisation of structures and variables, variable scope and lifetime, validation of input. Students
should also be made aware of the consequences of poor programming style and technique (i.e. poor maintainability, poor
security and vulnerability to attack). Later in the module students will be exposed to the importance and benefit of using
functions within their program design and will then utilise a key principle of trustworthy software by using an industry
standard unit testing framework. Students will also consider different approaches to identifying and solving a problem in
the context of a contemporary programming language.

This module takes it’s offset in the programing language Scala (www.scala-lang.org/). So why Scala? The landscape of
programming is changing. There is still plenty of traditional, imperative and object-oriented code being used in the world
which uses control abstractions known as sequence, selection and iteration. This means studying the order of statements
(instructions) in a program; how to let a program choose between alternative statements; and how to control statements
being executed repeatedly. Object-oriented programming brought in some very powerful ideas including applying
functions to collections so that the collections are transformed. Functional programming promotes a similar style of
transforming collections by applying functions over them. Crucially, these approaches differ from the imperative one-step-
after-another approach. This might all be of theoretical interest only if it were not for the fact that contemporary
programming languages including Scala, Java, C#, C++ are all now combining functional and object-oriented concepts.
Scala has a relatively clean syntax and a useful interactive compiler which makes it good for teaching the concepts.

Although the student learn Scala on the module, the skills are transferrable to other programming languages.

Learning outcomes

1. Design a program to a given specification using the control and data structure abstractions provided by a
contemporary programming language (Online Test 1 & Online Test 2)

2. Deploy trusted software design techniques in the construction of a computer program (Online Test 2)
3. Analyse a problem and produce a program specification (Practical)
4. Apply relevant software testing techniques to verify the components of a computer program and ensure it is

trustworthy (Practical)

Assessment

Assessment
Unit Of

Duration Duration
Individ'n

Weighting

Final
Assm't

(X = Yes)

Minimum
Threshold

Mark

Essential
Component (X

= Yes)
Anon. Marking Code

Practical HRS 16 40 X OPTO1

Online Test 1 HRS 0.7 30 AM
Online Test 2 HRS 0.7 30 AM
Anonymous marking exemption codes: OPTO1: Individually distinct work; OPTO2: Reflection on development of own work; OPTO3:
Presentation; OPTO4: individually negotiated work; OPTO5: work placement/experience/assessment

Assessment Notes
The module delivers a number of different themes within the subject area with an assessment point coming at the end of
each of these. Outcomes are intertwined with different emphasis on each of them as the module evolves. Therefore, the
first test may cover LO1 at a basic level but this will also be part of the second test in which certain design techniques have
now been learned. The second test also considers trusted software design techniques in the construction of a computer
program (LO2). The practical work involves analytical and problem-solving skills (LO3) that will be developed during the
module and will allow students to demonstrate software testing techniques and use of functions (LO4).

The assessment model encourages a reflective approach to teaching and learning in which students are encouraged to use
feedback gained and re-visit earlier material. The assessment strategy gives students the possibility to demonstrate
improved understanding which fits exactly the nature of learning to program in which deeper understanding of earlier
concepts can come with experience. Overall, this aligns with an integrated approach to assessment throughout the
module where regular practical tasks and formative practice tests directly support assessed work. One phase test may be
re-attempted (optionally) within the module delivery period. If an optional second attempt is taken, then the higher mark
of the two attempts for that phase test will be recorded.

Expected Methods of Delivery
Workshops will be used to introduce and demonstrate key practical and theoretical concepts. Practical programming skill
will be gained in regular laboratory sessions. Some sessions may be used for consolidation, revision, and to discuss
solutions to practical problems.

Workshop 24 hours
Practical 42 hours
Self-directed study 76 hours
Consolidation 68 hours
Reading 30 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

Operating systems and Networks
Module Code: CTEC1704N Credit Value: 30 Credit Level: Academic Level 4

Module Description
This module is designed to provide a foundation in computer architecture, operating systems, and computer networks.

Outline content:

1. Theoretical foundations:
a. Number systems, integer and real number representation
b. Finite state automata; Introduction to data encryption

2. Computer hardware:

a. CPU components and operation, instruction sets, Computer architectures, Memory

3. Systems software:
a. Operating system fundamentals, processes, file systems, memory management
b. Shell scripting
c. Authentication and authorisation.

4. Computer networks:

a. Network architectures, data communication system fundamentals, Transmission schemes and
technologies, error detection and management

b. Network components, LAN protocols, Internet protocols.

5. Security issues:
a. Information security: confidentiality, integrity and availability (CIA), Network vulnerability and security,

threats and attacks
b. Operating system vulnerability and security, threats and attacks
c. Architectural vulnerability and security

Learning outcomes

1. Demonstrate the theoretical and practical understanding of computer hardware, operating systems and
networks. (Phase Test 1, 2 and 3)

2. Relate the abstract concepts of logic and number systems to their concrete representation on real machines.
(Phase Test 1, 2 and 3)

3. Identify the security risks in common configurations of computer operating systems and suggest appropriate
mitigations. (Phase Test 1, 2 and 3)

4. Identify the security risks in common configurations of computer networks and suggest appropriate mitigations.
(Phase Test 1, 2 and 3)

Assessment

Assessment
Unit Of

Duration Duration
Individ'n

Weighting

Final
Assm't

(X = Yes)

Minimum
Threshold

Mark

Essential
Component (X

= Yes)
Anon. Marking Code

Phase Test 1 HRS 0.7 30 AM

Phase Test 2 HRS 0.7 30 AM
Phase Test 3 HRS 0.7 40 AM
Anonymous marking exemption codes: OPTO1: Individually distinct work; OPTO2: Reflection on development of own work; OPTO3:
Presentation; OPTO4: individually negotiated work; OPTO5: work placement/experience/assessment

Assessment Notes
Assessment 1, 2 and 3 are all online closed-book phase tests to assess factual knowledge in all topics. Students may be
provided with a handout containing factual information that will be used to assess the students’ skills and their ability to
apply their knowledge. The approach to assessment on this module is integrated with the delivery, and rewards students
for engaging with the practical content. One phase test may be re-attempted (optionally) within the module delivery
period. If an optional second attempt is taken, then the higher mark of the two attempts for that phase test will be
recorded.

Expected Methods of Delivery
Lectures will be used to introduce the main theoretical elements. Laboratory sessions will be used for practical application
and experimentation.

Workshop 24 hours
Practical 42 hours
Self-directed study 66 hours
Consolidation 68 hours
Reading 40 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

Module descriptions Level 5
Object Oriented Design and Development

Module Code: CTEC2710N Credit Value: 30 Credit Level: Academic Level 5

Module Description
This module focuses on Object-Oriented (OO) library and application development. Library development will enable
students to design, implement, and test medium scale software systems using an object-oriented approach. Meanwhile,
application development will use extensive library packages provided by the Java SDK so that students are comfortable in
navigating and making use of a variety of domains such as Collections, Input/Output and Graphical User Interfaces.

The design notation used is the Unified Modelling Language (UML) and the implementation language is Java.

It is essentially a programming module, with the emphasis on implementing OO designs and producing reusable libraries.
Students enrolling on this module will have a foundation in programming gained from the study of a level 4 programming
module. This module introduces UML and the Java language. Fundamental OO concepts and design issues are discussed.
Emphasis is placed on the design and structure of software, and the OO development process. UML is used to document
designs, and the concept of software design patterns are introduced.
Contemporary areas of the API will be used to showcase how OO applications can benefit from more recent functional
additions such as lambda expressions and stream pipelines. Students will be required to build graphical user interfaces
and consider associated features such as layout policies, observable data models, and binding events to properties. The
use of advanced areas of the API also allows a variety of design patterns such as composite, strategy and decorator to be
discussed and deployed.
Software quality, reliability, and maintainability are integral to the development of software, and are integrated into the
delivery by considering different approaches to solving common problems in application design. In particular,
encapsulation, decomposition, and decoupling are viewed within the context of the model-view-controller (MVC)
architecture. These design issues will commonly link to advised techniques of delivery as outlined in the PAS 754:2014
software trustworthiness specification.
By the end of the module students should have become more independent learners with the ability to adapt their existing
knowledge and learn additional software libraries and features.

Outline Content:

• The Java programming language, essential language constructs, and the API
• Principles of the object-oriented paradigm; Objects, Classes, Methods
• OO software design - encapsulation and delegation, polymorphism, etc
• UML notation - both static (e.g. class diagrams) and dynamic (e.g. Object diagrams)
• Implementation of associations – composition, aggregation and inheritance
• User defined classes, data representation decisions, Interfaces and abstraction
• Quality issues in software development
• Unit testing
• Documentation for maintainability and reusability and use of the Javadoc tool
• Identification and application of relevant design patterns, e.g. iterator and strategy
• Navigate and make use of a variety of domains within the SE Java API
• The collections framework and the data structures that underpin them - Nested types, functional interfaces and

lambda expressions
• Processing data with stream pipelines - File processing, input and output streams, and exception handling

Graphical user interfaces and event handling
• Deploying the model-view-controller software architecture

Learning outcomes
1. Use Java to implement standard object-oriented designs given in UML. (Portfolio)
2. Design and develop trustworthy software in the context of an object-oriented language. (Portfolio)
3. Design and develop applications with an emphasis on quality, maintainability, correctness and robustness,

enhancing their trustworthiness. (Programming specification)
4. Make effective use of the Java Software Development Kit Application Programming Interfaces. (Programming

specification)

Assessment

Assessment
Unit Of

Duration Duration
Individ'n

Weighting

Final
Assm't

(X = Yes)

Minimum
Threshold

Mark

Essential
Component (X

= Yes)
Anon. Marking Code

Portfolio HRS 20 50 OPTO1

Programming
Specification HRS 20 50 X OPTO1

Anonymous marking exemption codes: OPTO1: Individually distinct work; OPTO2: Reflection on development of own work; OPTO3: Presentation; OPTO4: individually negotiated work;
OPTO5: work placement/experience/assessment

Assessment Notes
The portfolio assessment is based on formative work carried out in lab and tutorial classes. The portfolio assignment is
carried out over several weeks and involves using Java effectively to implement a variety of different OO associations
given UML designs (outcome 1). The portfolio work also expects consideration of relevant quality issues (outcome 2). The
programming specification assessment will require students to use advanced features of the JDK to build a substantial
piece of software (outcome 4) using a given specification. There will additionally be an emphasis on the design approaches
taken by considering relevant quality issues (outcome 3).

Expected Methods of Delivery
Workshops will be used to introduce and demonstrate key practical and theoretical concepts. Practical programming skill
will be gained in regular laboratory sessions. Some sessions may be used for consolidation, revision, and to discuss
solutions to practical problems.

Workshop 30 hours
Practical 42 hours
Self-directed study 70 hours
Consolidation 68 hours
Reading 30 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

Data Structures and Algorithms
Module Code: CTEC2711N Credit Value: 30 Credit Level: Academic Level 5

Module Description
This module covers a variety of data structures and algorithms for both sequential and parallel execution as core module
for BSc Computer Science programme.

The focus of the module is that students should be able to establish the importance of structured representations of data
in the memory, the design of various data structures, the rationale behind organising data and how it supersedes the
benefits of accessing data with fast retrieval.

The module establishes a strong foundation by employing linear data structures such as array, linked list, stack and queue
and then advanced through non-linear data structures such as Hash tables, trees and so on. The sorting and searching
algorithms - selection, bubble, insertion, merge, and quick sort and their implementation are covered in detail. The data
structure concepts will be further clarified through real-time applications and their implementation in an object-oriented
framework. Several applications that implement data structures are represented: the stack of trays in a cafeteria, a stack
of plates in a cupboard, maze, parsing arithmetic expressions, backtracking and so on.

The algorithm analysis is done using asymptotic analysis using the time complexities for linear, quadratic, logarithmic,
exponential, and so on. The efficiency of the algorithms is measured in terms of theta, omega and Big O notation. The
selection of the data structure determines how the operations (such as reading to, writing from, modifying, or computing
with the data) can be achieved for the high performance with reduced time complexity.

Later in the module, students will be introduced to concurrent program design in the context of multi-core architectures
and distributed applications. With the increasing use of multi-core processors, there is now a greater need to understand
how concurrent and parallel programs work. The module will teach the theoretical background to enable students to
reason about such programs and determine the possible results a concurrent program could give. It will also show the
practical algorithms that can be used to write concurrent programs, focusing on ensuring that such programs will work
correctly and provide the expected output.

The module will also introduce the formal notations in the form of temporal logic and will show various methods for using
temporal logic to verify the correctness of concurrent programs. While the programming language focus will be on Java,
the theoretical concepts are applicable to many languages.

Outline Content

• Sequential algorithms for searching and sorting and their performance characteristics
• Classical data structures (linear, hierarchical, hash tables)
• Implementation issues (genericity, reference and value semantics, mutable and immutable objects)
• Formal notation for functional specification
• Concurrent (and parallel) algorithms
• Program (and program library) support for concurrent (and parallel) algorithm implementation

Learning outcomes

1. Explain and implement a variety of classical data structures (Practical and Phase Test 1)
2. Apply classic sequential algorithms for searching and sorting (Phase Test 1)
3. Analyse specific programming language and library support for the development of sequential and concurrent

programs (Practical)
4. Apply standard concurrent algorithm design patterns (Practical and Phase Test 2)
5. Explain formal notation in specific contexts (Phase Test 2)

Assessment

Assessment
Unit Of

Duration Duration
Individ'n

Weighting

Final
Assm't

(X = Yes)

Minimum
Threshold

Mark

Essential
Component (X

= Yes)
Anon. Marking Code

Phase test 1 HRS 0.7 25 AM

Phase Test 2 HRS 0.7 25 AM
Practical HRS 20 50 X AM
Anonymous marking exemption codes: OPTO1: Individually distinct work; OPTO2: Reflection on development of own work; OPTO3:
Presentation; OPTO4: individually negotiated work; OPTO5: work placement/experience/assessment

Assessment Notes
Theory and practice in this module are very highly coupled. Practical work will typically involve the implementation and
analysis of selected data structures and algorithms, including concurrent and/or parallel algorithms.

The practical assignment will consist of problem-solving tasks, assessing the students’ knowledge and implementation
skills for a variety of classical data structures (LO1), in addition to standard concurrent algorithm design patterns (LO4).
Furthermore, students will be required to analyse programming language and library support for these topics (LO3).

The first phase test will cover the theoretical topics of the module, assessing the students’ understanding of a variety of
classical data structures (LO1) and their ability to apply classic sequential algorithms for searching and sorting (LO2). The
second phase test will assess the theoretical aspects of the module, in particular concurrent algorithm design patterns
(LO4) and formal notation in specific contexts (LO5)

One phase test may be re-attempted (optionally) within the module delivery period. If an optional second attempt is
taken, then the higher mark of the two attempts for that phase test will be recorded.

Expected Methods of Delivery
Workshops will be used to introduce and demonstrate key practical and theoretical concepts. Practical programming skill
will be gained in regular laboratory sessions. Some sessions may be used for consolidation, revision, and to discuss
solutions to practical problems.

Workshop 24 hours
Practical 42 hours
Self-directed study 76 hours
Consolidation 68 hours
Reading 30 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

Web Application Development
Module Code: CTEC2712N Credit Value: 30 Credit Level: Academic Level 5

Module Description
This module provides a thorough grounding in the rapidly evolving area of web technologies. With equal focus on user
interface design on the ‘client-side’ or ‘front-end’ and on security and persistence in ‘server- side’ or ‘back-end’ scripting.
The module covers crucial design principles, information architecture and usability factors as well as standards
compliance, accessibility, authentication/authorisation and security.
This exciting field has been driven by advances in web standards, in particular HTML5 (introduced in 2008 and accepted as
a ‘living standard’ in May 2019), modular CSS (~2012) and the ECMAScript standard (ECMAScript2015 in particular) which
together define the modern web platform. The web standards process enables the platform to evolve extremely quickly,
and new features are released with increasing regularity.
Modern web applications typically make heavy use of server-side scripting using development languages such as PHP. This
pragmatic language is used to great effect by some web developers and with catastrophic naivety by others. Web
application solutions are typically implemented by teams of developers. The various roles typically undertaken will be
discussed with students.

Outline Content:

• Design principles and user experience
• Information Architecture
• Usability and accessibility
• HTML5, CSS3 and semantic markup
• Modern JavaScript and its context
• Responsive web design
• Version control systems
• Server-side scripting using a web development language such as PHP
• Persistent storage systems
• Common patterns of usage and failure

Learning outcomes

1. Demonstrate a critical understanding of information architecture, user interface design and usability principles
(phase test and web project).

2. Effectively apply knowledge of client-side web development technologies (web project).
3. Effectively apply knowledge of server-side web development technologies (web project).
4. Demonstrate a critical understanding of security protocols in web applications (phase test and web project).

Assessment

Assessment
Unit Of

Duration Duration
Individ'n

Weighting

Final
Assm't

(X = Yes)

Minimum
Threshold

Mark

Essential
Component (X

= Yes)
Anon. Marking Code

Phase test 1 HRS 0.7 40 AM

Web Project HRS 24 60 X OPTO1
Anonymous marking exemption codes: OPTO1: Individually distinct work; OPTO2: Reflection on development of own work; OPTO3:
Presentation; OPTO4: individually negotiated work; OPTO5: work placement/experience/assessment

Assessment Notes
The web project submission will be assessed on the prototype planning, quality of code, knowledgeable application and
integration of the relevant technologies, and adaptation of taught materials. It is to be submitted via a version control

system, with regular commits made during the module.

The phase test will cover all conceptual aspects of the module’s content ensuring students are aware of design principles,
commercially recognised programming standards and techniques, can apply and evaluate security in the context of web
applications, as well as being able to identify common web-application security vulnerabilities.

As part of the required preparation for the phase test, students will work in development teams, where they will typically
develop a web application with assigned roles, considering commercially recognised programming standards and
techniques.

The phase test may be re-attempted (optionally) within the module delivery period. The higher mark of the two attempts
will be recorded.

Expected Methods of Delivery
Workshops will be used to introduce and demonstrate key practical and theoretical concepts. Practical programming skill
will be gained in regular laboratory sessions. Some sessions may be used for consolidation, revision, and to discuss
solutions to practical problems.

Workshop 24 hours
Practical 42 hours
Self-directed study 76 hours
Consolidation 68 hours
Reading 30 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

Agile Development Team Project
Module Code: CTEC2713N Credit Value: 30 Credit Level: Academic Level 5

Module Description
This module is an opportunity for students to engage in a constrained work-place simulation based on agile software
development. Students working in teams of 3 to 5 will initially identify a system of sufficient size to be distributed equally
among all members. Work allocation will be monitored under the guidance of their tutor/supervisor. For example, each
team member might take individual ownership of the development of 2-3 classes from initial inception to completion
providing CRUD functionality. In the case of a large system this may mean that some aspects of the system are never built
to completion.

By the end of the module each team will be expected to develop an integrated software component based on their
individual work. This would typically be an administrative dashboard allowing for maintenance of system data.

No specific language is named for the module; however, it would be wise within a single team to select a family of
languages/development environments aligned with the prior experience of members based on their taught programme,
ideally this should also align with the team’s tutor/supervisor. Projects will need to be carefully sourced to match this
range of skills. In house projects might also be available. The assessment will be designed to encourage collaboration, peer
learning, and formative feed-forward assessment.

The module will include supporting materials introducing concepts and practice relating to agile development however
beyond that there is no formal taught content as this module aims to consolidate learning and skills from prior and
concurrent study. It is expected that students will use an appropriate set of tools for collaboration for example git- hub.

The ethical component will focus on software design and development and risk factors associated with the management
of these projects e.g. the pitfalls and problems; why do software development projects fail? There will also be a focus on
examining ethical approaches for software development (co-creation, collaboration, stakeholder engagement, etc).
Additionally, data collection technologies and approaches, processing and re-use, storage, security, and data minimisation
will be considered in the context of why protection of personal and business data is an ethical issue.

Learning outcomes

1. Work collaboratively with both tutor and peers (Portfolio)
2. Produce code-based solutions to problems generating suitable documentation (Portfolio)
3. Apply good practice in code design (Portfolio)
4. Find answers to programming problems (Portfolio)
5. Research into an area of computer ethics and integrate different ideas into a coherent analysis of a system, and

demonstrate critical and analytical skills in understanding the risks associated with managing software projects
(Case study analysis)

Assessment

Assessment Notes
A sprint is a time limited period of work where students work collaboratively to support each other on their individual
projects. Each sprint ends with a sprint meeting initially of five minutes of one-to-one contact between tutor and student.
These meetings provide an opportunity for formative feed-forward assessment and feedback such that the tutor may
support the student in their learning as they progress through the module. The final ten-minute sprint meeting is
summative in nature where the student’s work is marked by the tutor and immediate feedback is provided.

Students are encouraged to work in teams to support each other; however, all assessment is individual. There are options
available within the assessment to cater for any requirements relating to UDL1.

The case study analysis will involve utilising codes of ethics to investigate and identify points of failure related to the
management of software development projects, and to suggest a suitable ethical approach to address the case being
analysed.

Expected Methods of Delivery
The emphasis for assessment will typically be focussed on developing an administrative dashboard allowing for
maintenance of system data. The workshops will be used for formative feed forward assessments. The seminars will be
used to introduce and discuss ethical issues. Practical programming skills will be gained in regular laboratory sessions.
Some workshops and practical laboratory sessions may be used for consolidation and to discuss solutions to practical and
ethical problems.

Workshop 42 hours
Practical 20 hours
Seminar 4 hours
Self-directed study 76 hours
Consolidation 78 hours
Reading 20 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

1 Universal design for learning (UDL) is a teaching approach that works to accommodate the needs and abilities of all
learners and eliminates unnecessary hurdles in the learning process

Module descriptions Level 6 - Core
Software Development: Methods and Standards

Module Code: CTEC3701N Credit Value: 30 Credit Level: Academic Level 6

Module Description
This module immerses the students in the methodological, regulation environment in which software systems are
developed. This is achieved by exploring four types of application development: module, AI, robotic process automation
and games systems. These application classes provide the basis for exploring methodological approaches, with a particular
emphasis on current agile approaches, in particular Scrum and DevOps. The different needs and emphasis of different
applicant classes are considered. Within this context the methodological evolution required in scaling, in embedding, in
security by design and in integration are considered.

The module incorporates the context of standards with particular reference to standards in security (ISO27001) and risk
management (ISO27005). Practical exercises include an engagement with current agile project management tools (e.g. Jira
and Clickup). Students develop an understanding of a range of agile and traditional methodologies and consider the
debates, ambiguity and uncertainty in their application.

The module considers legal and ethical aspects of software development. The ethical approach addresses responsible
development and embedding sustainability through a considering of green IT issues. Ethics studies include intellectual
property (who owns your data?), copyright, patents and trademarks, and the ethics of ownership (NFTs etc). The digital
divide is covered (e.g. economic, social, political, cultural, etc) understanding the issues and solutions (including SDG’s).
Plus, topics surrounding responsible research and innovation (RRI) and how it can begin to address the ethical issues of
technological development.

The law component of the module focusses on three key areas – computer misuse, professional negligence, and
intellectual property law. Relevant elements of the Computer Misuse Act 1990 (CMA 1990), the civil tort of negligence
(and how it applies to professionals) and both the criminal law and civil law aspects of Intellectual Property will be
introduced, developing knowledge and understanding of the various obligations.

Outline Content:

• Introduction to methodologies. Overview of agile approaches. Comparing agile and waterfall. Why methodologies
are important. Steps and characteristics of developing a mobile application. The development environment in an
organisation. Method versus methodology. Ethics of responsibility, accountability and sustainability in software
development.

• Developing AI and ML applications. Methodological approaches. Software development as a learning exercise.
Systems development standards. Concept of a standard. How standards work. Sustainability consideration in
application development.

• Ethics of software development. Intellectual property (who owns your data?), copyright, patents and trademarks,
and the ethics of ownership. The digital divide (e.g. economic, social, political, cultural, etc) Understanding the
issues and solutions (including SDG’s). Responsible research and innovation (RRI). Robotic Process Automaton
Scaling, Integration and Security methodologies. Spotify, Scaled Agile Framework. Secure development lifecycle.
Security by design. Brief intro to DevOps and DevSecOps. Metrics.

• Games development: methodological approaches. Organisation in a development environments and automation.
Design thinking overview. Risk game company. Issues of scaling in multi-player games. Importance of
management and risk management standards.

• Criminal Law: The Computer Misuse Act 1990; Elements of Intellectual Property Law. Civil Law: The tort of
negligence and how it applies to professional conduct; protection of intellectual property rights using civil actions.

• Revision; assessment completion.

Learning outcomes

1. Evaluate and select a methodology for developing a common application. (Structured Proposal)
2. Assess the consequences of scaling, integration and security in an application development. (Structured Proposal)
3. Devise a plan for the adoption of an appropriate standard within an application development environment.

(Structured Proposal)
4. Recognise and evaluate current and future ethical issues surrounding the application of ICT. (Case study analysis)
5. Identify, critically analyse and apply laws, regulations and standards as found in the U.K. thereby demonstrating a

sound understanding and ability to locate and use primary and secondary sources. (Report)

Assessment

Assessment Notes
The assessment for the ethics material is in the form of a case study analysis of a current issue/case surrounding the
associated topics delivered on the module.

The law related material will be assessed by a written component that comprises a business report to a senior manager in
their organisation that evaluates the merits of a systems or software business proposal/problem. Students should strive to
write an accurate, concise, cogent, and critically analytical business report to their (fictitious) manager that sets out their
recommendations in relation to an intellectual property (I.P.) issue that has arisen in a work context.

The software methodologies assignment is based round a client selected by the student. Following an analysis of the client
and their current state and future needs, three applications are identified based on the different technologies and
contexts explored in the module. Following a concise description of the proposed applications, the student will identify in
outline needs for processing, data, hardware and any other requirements are identified. For each application the student
will be required to propose two different methodological approaches and evaluation of the methodologies provided in
summary which identifies the preferred methodology.

Expected Methods of Delivery
Lectures will be used to introduce and demonstrate key practical and theoretical concepts. Seminars will be used to
discuss and further reinforce these. Some sessions may be used for consolidation, revision, and to discuss solutions to
practical problems.

Lectures 24 hours
Seminar 42 hours
Self-directed study 86 hours
Consolidation 68 hours
Reading 40 hours

Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment
table

Literature
• Farley, D., 2021. Modern Software Engineering: Doing What Works to Build Better Software Faster. Addison-Wesley

Professional. ISBN: 978-0137314911 (Recommended)

• Jacobson, I., Ng, P.W., McMahon, P.E. and Goedicke, M., 2019. The essentials of modern software engineering: free
the practices from the method prisons!. Morgan & Claypool. ISBN: 978-1947487246 (Optional)

• Sommerville, I., 2015. Software Engineering, Global Edition. Tenth Edition Pearson. ISBN: 978-1292096131 (Optional)

Big Data and Machine Learning
Module Code: CTEC3702N Credit Value: 30 Credit Level: Academic Level 6

Module Description
The module will focus on machine learning and its application to Big Data in a "taster-like" fashion. That is, ML will be
applied to solve analytics problems using appropriate tools e.g., Apache Spark that avail ML libraries. As this is done ML
algorithms will be introduced and then applied. The focus is therefore not so much on the technical details of the
algorithms - rather, the ability to implement them and use them within analytics. The module covers supervised and
unsupervised learning techniques with a specific application to data mining. Selected classification, regression, and
clustering approaches will be examined. Algorithm evaluation and evaluation metrics will be explored, and machine
learning frameworks and tools introduced. The module also covers Big Data, Big Data analytics, Machine learning
frameworks e.g., Apache Spark, machine learning libraries e.g., Spark Machine Learning Library (MLlib), and Hadoop
Distributed File System. Additionally, the module considers ethics in relation to AI, big data, and surveillance.

Outline Content:

• Overview of machine learning, concept learning, training data, and inductive bias.
• Experiments, evaluation metrics, and evaluation.
• Introduction to Big Data and Big Data analytics
• Introduction to Big Data storage infrastructure (such as the Hadoop Distributed File System, NoSQL databases,

NewSQL databases and so on)
• Machine learning frameworks and tools e.g. WEKA, Apache Spark, etc.
• Machine learning libraries e.g. - Machine Learning Library (MLLib)
• Data exploration, analytics, & visualization
• Linear regression
• Classification: decision tree learning, Bayesian learning, nearest neighbour, and artificial neural networks
• Unsupervised learning and clustering
• Programming and Data Analytics using a machine learning framework e.g. Apache Spark/Graph Frames
• Surveillance and society, examining the development and impact of surveillance e.g. CCTV, Vaccine passports,

online tracking etc
• The ethics of AI, its uses, issues, and concerns. To examine the changes in human autonomous decision making

and its potential impact and influence on everything from jobs to health or food choices.
• Big data and its influence on organisational decision-making, marketing, and governmental ‘nudge’ policies.

Learning outcomes

1. Critically evaluate Big Data, where it comes from and what the opportunities and challenges are, including
storage infrastructures and their pros and cons (Phase Test)

2. Develop solutions for data exploration, visualization and analytics using suitable machine learning frameworks
such as Apache Spark. (Problem Specification)

3. Identify and describe classification and clustering algorithms and their application areas (Phase Test)
4. Select and apply the suite of machine learning algorithms available in a machine learning library e.g., Spark

Machine Learning Library, to develop solutions to machine learning problems. (Problem Specification)
5. Research into an area of computer ethics, integrate complex and sometimes conflicting ideas into a coherent

analysis that demonstrates integrative, synoptic, and analytical skills. (Case Study Analysis)

Assessment

Assessment Notes
Students will receive tutor support on their coursework during the scheduled laboratory sessions. Students will be
provided with a problem description or select from a list of problem descriptions. The problem description(s) will be
derived from contemporary real-world data analytics problems to give the students a clear feel of the real-world nature of
the solutions they should develop. Each student will be expected to develop a solution and document both the process
and results.

The phase test will consist of brief essays, multiple choice questions, and instances to fill in spaces. It will cover Big Data,
opportunities arising from big data, and machine learning algorithms.

The case study analysis will involve researching into areas such as AI, surveillance, and big data, and considering uses,
impacts, concerns, etc, from an ethical perspective.

Expected Methods of Delivery
Lectures will be used to discuss concepts, theories, and applications including machine learning algorithms and data
analytics tools. Practical sessions will be used to undertake practical aspects of the module to solve selected data analytics
problems from a wide range of areas.

Lecture/Workshop 24 hours
Practical 35 hours
Seminar 7 hours
Self-directed study 70 hours
Consolidation 64 hours
Reading 40 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

Development Project (The Bachelor project)
Module Code: CTEC3451N Credit Value: 30 Credit Level: Academic Level 6

Module Description
The project provides students with the opportunity to carry out a significant piece of work that reflects the aims and
outcomes of their specific programme. It provides students with the opportunity to demonstrate practical and analytical
skills present in their programme of study; to work innovatively and creatively; to synthesise information, ideas, and
practices to provide a quality solution, together with an evaluation of that solution. The project should meet some real
need in a wider context.

Students will demonstrate an ability to self-manage a significant piece of work and will undertake a self-evaluation of the
process. Students will be expected to demonstrate appropriate and proactive project management and written/verbal
presentation skills throughout the period of the project. As well as analysing, designing, delivering and appraising a
product of suitable quality, they will be expected to undertake research, analysis, design, implementation, verification,
evaluation and reporting pertinent to the project.

Indicative Content: The range of projects will be wide. Projects are obtained from a variety of sources including: internal
academic proposals, external organisation suggestions, and a number from students themselves.

The deliverables will include:
1. A main report which will include:

a. elucidation of the problem and the objectives of the project
b. an in-depth investigation of the context and literature, and where appropriate, other similar products
c. where appropriate, a clear description of the stages of the life cycle undertaken
d. where appropriate, a description of how verification and validation were applied at these stages
e. where appropriate, a description of the use of tools to support the development process
f. a critical appraisal of the project, indicating the rationale for any design/implementation decisions, lessons

learnt during the course of the project, and evaluation (with hindsight) of the project outcome and the
process of its production (including a review of the plan and any deviations from it)

g. a description of any research hypothesis
h. references

2. A set of appendices that are referred to within the main report, and which contain the substantive work on the

project, including product deliverables, such as requirements and design specifications and other project documents
(project contract, inform consent, ethics review form etc.).

3. A product demonstration shortly after the submission of the main report.

Learning outcomes

1. Apply theoretical and practical concepts from the programme of study to the construction of a solution to a
practical problem. (Initial and Final)

2. Carry out research and analysis to support the project requirements. (Initial)
3. Plan and selfmanage the work. (Initial and Final)
4. Assess the potential global impact of the work (Initial)
5. Present the work using a report in which the process and product are described, analysed, and critically

evaluated. (Final)
6. Present and defend the work in a formal demonstration (Final)

Assessment

Assessment Notes
Each project submission will be assessed holistically on specific criteria which cover the report, the product, the
management, and the demonstration. There are several means by which evidence for assessing project work may be
gathered including but not limited to

• Attendance at supervisory meetings and the outcomes of these meetings
• The written deliverable submissions, in the manner as detailed in the current student project handbook
• Demonstration

An appropriate marking scheme will be available on the module Blackboard shell.

The project demonstration is compulsory and nonattendance will normally result in a mark of zero for the project.

Expected Methods of Delivery
The project is primarily self-directed with guidance and support from an assigned supervisor. Project skills sessions will
normally be provided to give students the necessary pre-requisite knowledge and skills for the project that are not
covered elsewhere in the taught programme.

A project Blackboard shell is available as a resource for students, which contains all the necessary project
documents/forms, the project calendar, project guidance notes, the list of available projects and supervisor allocations,
deadline information, lecture notes etc.

A demonstration is given by the student to their supervisor and second reader towards the end of the module. This
enables students to show their understanding of the findings of their work, and to defend what they have done and how
they have done it.

Workshop 4 hours
Supervisor meetings 5 hours
Self-directed study 291 hours

Literature
There is no set literature list for the Bachelor project. Students are expected to use literature from the courses they have
followed so far and/or find literature relevant for the project by themselves.

Module descriptions Level 6 - Electives
Functional Programming

Module Code: CTEC3704N Credit Value: 30 Credit Level: Academic Level 6

Module Description
Functional Programming (FP) is a mature software development paradigm that is for teaching, research, and industrial
software development. Throughout the 2010s, and subsequently, the use of FP has grown significantly in industry, and
most mainstream programming languages have adapted to include support for fundamental FP concepts. One reason for
the growth of FP is that the paradigm makes it easier to develop code for concurrent execution on multiple-core
machines. The removal of shared mutable state reduces the dependence on traditional locks and improves scalability; and
the replacement of strict, sequential processing by computations that can be distributed automatically across multiple
processes, allows for greater levels of optimisation.

(Pure) functional programming is based upon firm mathematical foundations. The use of referentially transparent
functions and immutable data makes it possible for techniques such as equational reasoning to be applied to program
fragments that facilitate their translation, automatically, into more efficient formulations. A familiarity with the
foundations, and some of the techniques that can be used to reason formally about functional programming constructs,
will help the programmer to apply these constructs effectively. Programming without the use of mutable state can present
a challenge to a programmer who is already familiar with traditional, non-functional programming techniques. However,
the benefits that accrue from this style of software development are worthy of serious investigation by any contemporary
software engineer.

This module provides the student with the fundamental concepts of FP and looks at how these have been provided within
a modern programming language. The student will gain practical experience, using a modern programming language to
solve a practical problem using FP techniques. The core principles are transferrable between functional programming
languages.

Outline Content:

• Overview of the Functional Programming (FP) paradigm: how FP differs from other paradigms – in particular,
procedural, and object- oriented. Explanation of programming with side effects vs. using functions that have
referential transparency, immutability.

• Functions: background theory (lambda calculus); curried arguments; higher-order functions; partial application;
syntactic shortcuts (e.g. operator sections); recursion; function composition.

• Types: compile-time type checking; generics; type inference; (meaning of covariance and contravariance
constraints if using a programming language that supports these concepts).

• Pattern matching:
• deconstructing tuples, lists, etc. in definitions.
• Lists: standard list functions including, e.g., map, filter, concat, flatMap, fold (reduce), take, drop, zip, unzip.
• List comprehensions: syntax, nested comprehensions, relationship to the higher-order functions map, filter, and

flatMap.
• List laws: use of equational reasoning to demonstrate equivalences between certain expressions containing lists:

e.g. map (f o g) = map f o formally about functional programs). map g. (This shows how the mathematical
underpinning is used to reason

• Data structures: building new user-defined data types - including renaming types, and constructing new abstract
data types.

• Laziness: distinction between lazy evaluation and strict evaluation, and showing how the language of instruction
supports both these evaluation strategies. Compare the benefits and drawbacks associated with each approach.

• Threading stateful computation: use of monads as a mechanism for performing stateful computation within a
functional context.

• Examples of libraries that exploit the role of higher order functions as combinators. E.g. combinator parsing.
• Examples of larger frameworks that are based upon functional concepts. For example, in Scala, an introduction to

the actor model Alternatively, concurrent Haskell could be demonstrated if Haskell were (Akka) for concurrent
processes would make a suitable case study. the language used for instruction. Any similar framework that is
related to the language used for module delivery would be appropriate in this context.

Learning outcomes

1. Describe and evaluate theoretical and programming language constructs that utilise key FP concepts, including
functions as first- class values, higher order functions, currying, partial application, referential transparency,
immutability, function composition, strict and lazy evaluation. (Online test, Theory paper)

2. Apply formal reasoning to demonstrate specific properties of selected expressions or functions. (Theory paper)
3. Apply methods for constructing and transforming lists using standard higher order functions and list

comprehensions. (Practical)
4. Apply functional programming techniques, including, but not limited to, higher order functions, function

composition, and immutable state, to construct a solution to a practical problem. (Practical)
5. Justify the use of specific programming techniques with reference to their adherence to the functional model,

and their appropriateness and/or efficiency within a specific application area. (Practical)

Assessment

Assessment Notes
Three different forms of assessment are used to cover the learning outcomes. These reflect the combination of theory and
practice that constitutes the module content. They also offer a range of assessment types within the module.

The Online Test is time-constrained, and to utilise the question types available on a modern VLE such as Blackboard to
assess fundamental concepts from both the theoretical and practical aspects of the module. The mathematical nature of
the underlying theory, and the syntax and semantics of a programming language, mean that a series of questions that
evaluate such understanding can be constructed in this medium. The phase test may be re-attempted (optionally) within
the module delivery period. The higher mark of the two attempts will be recorded.

The Theory Paper is a short exercise consisting of, e.g., two or perhaps three questions, that require the student to apply
theoretical methods to demonstrate given properties of specific functional constructs. The answers will probably fill about
two pages of A4.

The Practical Assignment allows the student to demonstrate that they can develop a functional program or library, to a
given specification. The assignment allows the student to demonstrate the use of functional programming techniques that
have been covered on the module. It is important that the code is well-commented, and it is encouraged that an analysis
of some aspect of the work is required to be included within the code itself – probably as an extended comment block.
The latter will allow the student to discuss, in situ, necessary details regarding efficiency, appropriateness, and adherence
to the FP model, as required by the assignment specification, and in fulfilment of LO5.

Expected Methods of Delivery
Workshops will be used to introduce and demonstrate key practical and theoretical concepts. Practical programming skill
will be gained in laboratory sessions. Some sessions may be used for consolidation, revision, and to discuss solutions to
practical problems.

Workshop 30 hours
Practical 42 hours
Self-directed study 64 hours
Consolidation 64 hours
Reading 40 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

Advanced Web Development
Module Code: CTEC3705N Credit Value: 30 Credit Level: Academic Level 6

Module Description
The module builds on the outcomes of the level 5 module – Web Application Development.

Many modern computer services are now accessed via the ubiquitous web-browser, and users have come to expect
instant and secure access to information on a wide range of platforms. Underpinning these web systems is usually a web
application, providing a channel to data stored in databases. However, increasingly the website has also become a point of
entry for unauthorized access to stored data. This is often the result of poor web application design and/or
implementation.

The module considers how a web application may be designed and implemented in such a way as to reduce the likelihood
of unauthorised access to information. This also requires an understanding of the more common forms of browser-based
attacks and the coding techniques that can be used to defend against these. The module aims to further develop key
concepts and techniques for designing, evaluating and implementing interactive web applications. Designing user
interfaces that users can understand immediately and learn easily, enabling them to carry out tasks smoothly and
efficiently without excessive effort or stress, is a crucial part of software development. Failures of design can cause
technically successful systems to fail in practical use. User interface development frequently eats a large chunk of the
development budget, and large projects employ many user interface design and user experience specialists - and systems
analysts and technical developers need to be able to talk to them - while many non-specialist software developers find
themselves needing to tackle interface design problems.

Designing successful interactive systems involves understanding and applying the key principles of designing usable
systems, but also understanding the characteristics of the user populations, the nature of their tasks and environments,
and which of the many different aspects of usability are important for this system and this task and considering trade-offs
between different aspects of usability. But successful interactive system design goes beyond usability: it involves
considering the user experience as a whole including how graphic design and system behaviour influences user emotions,
and how the interactive system itself is integrated into the user/customer/client's experience of the entire organization.

Design is only one half of the coin - testing and evaluating prototypes of interactive systems is a critical part of building
systems without major usability problems and achieving a good user experience. The module therefore provides a
thorough grounding in the rapidly evolving area of full-stack web development, incorporating front-end web technologies,
back-end server-side scripting, and data persistence techniques. The module also considers how information can be
accessed and presented from remote sources via web-service protocols.

Outline Content:

• Designing for usability
• Designing for human cognitive capabilities
• Evaluation
• Designing for good user experience
• Design principles and user experience
• HTML5, CSS3 and semantic markup
• Asynchronous JavaScript and the fetch API
• Web languages for mobile development
• Version control systems
• Web-technology – e.g. web-service protocols, data persistence techniques, security, etc.

Learning outcomes
1. Ability to apply key general principles of usability, both to guide effective design and to evaluate existing systems.

(Online Test, Web project)
2. Ability to propose and specify a suitable system design that aligns with the cognitive capabilities of its target

human stakeholders and fits the needs of different users for different tasks and environments (Web Project).
3. Ability to critically appraise the suitability of a range of different techniques for evaluating the usability of

interactive systems for particular systems, situations and purposes, and apply the evaluation techniques to
produce usability evaluations. (Web Project)

4. Can design and implement a fully standards-compliant, responsive and accessible webtechnology-based
application that is impervious to the most common web-based attacks. (Web Project, Online Test)

5. Can design and implement a web application that accesses and displays data from remote web services. (Web
Project)

Assessment

Assessment Notes
The primary assessment will comprise the development of an interactive web application that can run over the web in a
web browser, with server-side processing and server-side data persistence.

The web application submission will be assessed on the prototype planning, application of interaction design principles,
quality of code, knowledgeable application of all utilised technologies, and adaptation of taught materials. It is to be
submitted via a Version Control System, such as GitHub, with regular commits during the module. The web project will
allow the student to demonstrate an understanding of the analysis, design and implementation of a secure web
application, based upon a commonly used development framework. The web project will be assessed by a mandatory viva
voce.

The phase test will be delivered on-line. It will assess the students' knowledge and understanding of current web
applications, issues of architecture and security, as well as aspects of human computer interaction.

Expected Methods of Delivery
The module will comprise lectures and reading about different aspects of human computer interaction, and a combination
of paper-based tutorial and computer-based lab activities practising the use of a range of different techniques for
understanding requirements, developing designs and performing usability evaluations. Intensive teaching through the
lectures will be backed up by practical demonstrations and laboratory work.

A series of short tutorial questions will be used to reinforce the lecture content. The web project will require the students
to develop a demonstrably secure webapplication, Implementing the techniques they have learned throughout the
teaching period.

Students will have access to a localhost development environment (web server, database server, development IDE) upon
which their web applications will be implemented. Completed and tested web applications will be uploaded to relevant

public facing servers for assessment. Students will also require access to remote web-service APIs such as the EE M2M
SMS server.

Workshops will be used to introduce and demonstrate key practical and theoretical concepts. Practical programming skill
will be gained in regular laboratory sessions. Some sessions may be used for consolidation, revision, and to discuss
solutions to practical problems.

Workshop 24 hours
Practical 42 hours
Self-directed study 76 hours
Consolidation 68 hours
Reading 30 hours
Assessment 60 hours – subsumes estimated time for producing deliverables as per the assessment

table

Literature

Fuzzy Logic and Inference Systems
Module Code: IMAT3722N Credit Value: 30 Credit Level: Academic Level 6

Module Description
Fuzzy logic is a mathematical model for handling uncertainty. It is able to provide a means in order to successfully
inference from abstract and subjective notions. Fuzzy logic adopts the perspective that the world and humanistic
understanding are inherently vague and not precise. Concepts like that of; hot; cold; near; far; and other forms of
expressive language where precise values are not given, are extremely difficult to model when universal understanding of
such concepts are non-existent. What is beautiful to some, may not be beautiful to others; concepts can have different
meanings to different people. Fuzzy logic and fuzzy theory provide the tools in order to fuzzify abstract notions so that
they can be modelled and inferenced in a humanist manner, such that they can be understood by a larger population.

The utilisation of fuzzy components ultimately allows for the creation of a fuzzy inference system, a system based on the
thought and decision making processes adopted by human cognition. The use of fuzzy sets; a fuzzy inference engine; and
knowledge base, creates for an incredibly powerful tool. Fuzzy inference systems are extremely versatile and can be
deployed on many different domains and have been utilised by industry in many different sectors.

This module will present the core and fundamental concepts of fuzzy logic, from theory to application. The understanding
developed will allow for a fuzzy perspective to be adopted, understood and appreciated. The ability to create specialised
fuzzy inference systems will be achieved and so too will the ability to articulate on thought processes needed to create
such systems. A comprehensive understanding of fuzzy logic, theory and application will also be covered. The module will
also investigate the literature on fuzzy and its areas of application to further instil the applicability of a fuzzy approach and
the ethical implications of modelling subjective perception based uncertainty.

The module will provide a comprehensive introduction to fuzzy logic in addition to the following:

• The concepts of uncertainty, vagueness and imprecision
• Set theory and the notion of a fuzzy set
• Basic operations on fuzzy sets; intersection; union; complement
• Fuzzy inference systems; Mamdani, TSK, zeroorder, first-order
• Type-2 fuzzy logic; interval type-2 fuzzy logic; generalised type-2 fuzzy logic
• Fuzzy logic applications
• The use of MATLAB for creating fuzzy inference systems
• Ethical considerations when considering cognitive subjective modelling
• Forwards chaining inference; backwards chaining inference
• Knowledge acquisition
• Knowledge representation

Learning outcomes

1. To propose a solution via the creation of a fully functioning fuzzy inference system based on a domain chosen by
the student (Coursework)

2. Acquire an in-depth understanding of a fuzzy perspective when modelling abstract notions (Coursework)
3. Demonstrate a sound comprehensive and qualitative understanding and the ability to locate and use appropriate

findings from the scientific literature (Coursework)
4. To be able to articulate, critique and evaluate on the decision making processes adopted when justifying the final

configured system (Coursework).

Assessment

Assessment Notes
The coursework is a SINGLE assessed component worth 100% of the module mark. 1) The students will be tasked with
creating a fuzzy inference system. 2) The students will be expected to submit a detailed report of their fuzzy inference
systems. The coding of the system in terms of syntax or elegance does not contribute to the coursework mark. The
coursework mark is dependent on the quality of technical report in accordance to the marking criteria.

The coursework will be used to assess their ability to implement these ideas in a fully functioning fuzzy inference system.
The accompanying report with not only document the system in detail, but also provides the student the platform to
express their understating of fuzzy logic and its application.

The coursework assessment will be undertaken throughout the various practical lab sessions, where the students can
contribute further to their systems and technical reports with contact time with the module tutor. This allow formative
feedback from tutor to students on their work to occur throughout the module.

Expected Methods of Delivery
The module will make heavy use of practical lab work, where the students will be able to refine their understanding of the
topics covered. The labs will also allow for the students to start on the coursework, which will be evolve after each
session, incorporating more fuzzy theory.

Workshop 13 hours
Practical 52 hours
Self-directed study 19 hours
Assessment 216 hours

Literature

• Peckol, J.K., 2021. Introduction to fuzzy logic. John Wiley & Sons. ISBN: 978-1119772613 (Recommended)

• Singh, H. and Lone, Y.A., 2020. Deep neuro-fuzzy systems with python. Apress, Berkeley, ISBN:978-1484253601

(Recommended)

• Keller, J.M., Liu, D. and Fogel, D.B., 2016. Fundamentals of computational intelligence: neural networks, fuzzy
systems, and evolutionary computation. John Wiley & Sons. ISBN: 978-1119214342 (Optional)

• Mendel, J., Hagras, H., Tan, W.W., Melek, W.W. and Ying, H., 2014. Introduction to type-2 fuzzy logic control: theory
and applications. John Wiley & Sons. ISBN: 978-1118278390 (Optional)

Privacy and Data Protection
Module Code: IMAT3711N Credit Value: 30 Credit Level: Academic Level 6

Module Description
There continues to be a growth of databases holding personal and other sensitive information in multiple formats
including text, pictures and sound. The scale of data collected, its type and the scale and speed of data exchange have all
changed with the advent of ICT. Whilst the potential to breach privacy continues to increase organisations are subjected
to a considerable amount of legislation governing privacy and data protection.

This module examines the balance between maintaining business effectiveness, legal compliance and professional
practice in the field of IT/IS. The module will:

1. address the legal, social and technological aspects of privacy and data protection,
2. consider privacy enabling technologies and privacy invasive technologies,
3. identify and evaluate the role of the computer professional in providing privacy and data protection.

Care will be taken in ensuring perspectives from different cultures and countries are highlighted and considered in the
light of global information systems.

Indicative topics:

• Introduction to the module, privacy and data protection (DP).
• Undertaking literature research.
• Privacy Theory.
• Privacy - the global perspective.
• Privacy as a consumer issue.
• Privacy as a corporate issue.
• Surveillance Theory.
• Surveillance Technology: Types and applications
• Data Protection and its relationship to privacy.
• The current data protection framework.
• Data Protection - Global perspectives.
• Privacy and DP in Information System Development.
• Data Protection and its impact on the IS professional.
• Privacy Enhancing Technologies.
• Technical and Managerial Responses to Privacy and DP.

Learning outcomes

1. Display a systematic understanding of the concepts of privacy and data protection within a multi-cultural and
multidisciplinary context.

2. Using appropriate techniques of analysis and enquiry within this discipline recognise and evaluate current and
future threats to privacy.

3. Outline and evaluate IS professional practice with regard to perceived professional and social responsibilities to
employers and data subjects. Drawing upon current reseach in the field this will lead to an appreciation of the
uncertainty and ambiguity that surrounds the role and responsibility of IS staff in this field.

4. Research into an area of privacy and or data protection; integrate complex and sometimes conflicting ideas into a
coherent analysis that demonstrates integrative, synoptic and analytical skills in accordance with the Framework
for Higer Educations Qualifications guidelines/indicators [a,b,c&d]

Assessment

Assessment Notes
Students will complete weekly reading preparation which develop their reading, writing and critical thinking skills. This,
alongside the seminar discussions, will lay the foundation for the coursework. The debate reflection article is to critically
analyse and discuss issues and dynamics of the PDP debate topic. The topic for discussion is decided in a poll by students.
Students will also undertake a group video presentation.

Expected Methods of Delivery
A range of learning strategies will be used to facilitate student learning.

Sessions will be used to introduce major topics drawing together material from a variety of sources. Students will be
encouraged to read widely, using the reading list as a starting point and library resources and the internet for further
information.

The assignment will provide the opportunity for students to develop their literature searching skills and their ability to
integrate complex and often conflicting ideas into a coherent summary that will form the basis of their essay. The PDP
debate is arranged through a democratic process whereby student suggest motions which are then voted upon to decide
on the debate topic. The module website will provide essential module information such as a week by week teaching plan,
the reading list and assessment information. It will also be used to direct the students to useful sources of information and
for essential updates such as drawing the students' attention to recently published relevant papers.

Workshop 40 hours
Seminar 90 hours
Self-directed study 90 hours
Assessment 80 hours

Literature

Assessment Methods

Assessment Methods 2023/2024 BSc in Computer Science

Modules are assessed in many different ways as outlined in the module description for each particular module, but here
are some of the most common methods of assessment:

Essay a written assignment based on a set question (or choice of questions) with a word limit.

Case Study an analysis of a current issue/case surrounding the associated topics delivered on the module.

Report a structured assignment using headings and sub-headings used to look at a particular problem or issue
and make recommendations within a word limit. This could be an individual piece of work or group
work.

Portfolio a written piece of work where students are asked to reflect on their development and experience and
what they have learned from it.

Phase Test a shorter test (usually multi-choice or short answers) which takes place under exam conditions –
typically online.

Structured
Applications
Proposal

a way of presenting a development project – typically in a form used as decision presentation for top-
management

Practical an individually distinct work where the student demonstrates ability to do practical work related to
the course subject, e.g., writing working program code in a programming course

Presentation this can be in groups or done individually and usually takes place in a classroom or lecture theatre
using visual aids such as PowerPoint.

Emphasis is on formative feedback when it comes to coursework to enable the student to critically reflect on own work
and integrate feedback in future assignments.

Code Module Title Learning Outcome Assessment
CTEC1701N Database

Design and
Implementation

1. Derive a suitably normalised database design that
reflects the business requirements of a typical
corporate scenario. (Online Test 1 & Online Test
2)

2. Implement a database design via a Relational
Database Management System addressing
business use cases, information integrity and
information security. (Online Test 1 & Online Test
2)

3. Acquire an understanding of big data and
differentiate structured, semi-structured and
unstructured data. (Online Test 2)

Phase test 1 (40%)
Phase test 2 (40%)
Report (20%)

4. Demonstrate a sound understanding and ability
to locate and use primary and secondary sources.
(Report)

5. Identify and implement privacy tools in the design
of database. (Report)

CTEC1702N Fundamental
Concepts of
Computer
Science

1. Construct and manipulate propositional logic
statements. (Online Test)

2. Construct and manipulate set-theoretical
mathematical objects. (Online Test)

3. Undertake probabilistic calculations and perform
hypothesis testing. (Online Test)

4. Demonstrate an understanding of the different
kinds of requirements software systems need to
meet, and the ability to formulate appropriate
requirements. (Portfolio)

5. Demonstrate an outline understanding of the
software development lifecycle including the basic
principles of user centered design and awareness
of contrasting approaches to structuring the
development process. (Portfolio)

6. Demonstrate understanding of key theories and
current ethical concerns in information systems
and computing, including professionalism and
codes of ethics. (Case study analysis)

Phase test 1 (50%)
Portfolio (30%)
Case study (20%)

CTEC1703N Computer
Programming

1. Design a program to a given specification using the
control and data structure abstractions provided by
a contemporary programming language (Online
Test 1 & Online Test 2)

2. Deploy trusted software design techniques in the
construction of a computer program (Online Test 2)

3. Analyse a problem and produce a program
specification (Practical)

4. Apply relevant software testing techniques to
verify the components of a computer program and
ensure it is trustworthy (Practical)

Practical (40%)
Phase test 1 (30%)
Phase test 2 (30%)

CTEC1704N Operating
Systems and
Networks

1. Demonstrate the theoretical and practical
understanding of computer hardware, operating
systems and networks. (Phase Test 1, 2 and 3)

2. Relate the abstract concepts of logic and number
systems to their concrete representation on real
machines. (Phase Test 1, 2 and 3)

3. Identify the security risks in common
configurations of computer operating systems and
suggest appropriate mitigations. (Phase Test 1, 2
and 3)

Phase test 1 (30%)
Phase test 2 (30%)
Phase test 3 (40%)

4. Identify the security risks in common
configurations of computer networks and suggest
appropriate mitigations. (Phase Test 1, 2 and 3)

CTEC2710N Object Oriented
Design and
Development

1. Use Java to implement standard object-oriented
designs given in UML. (Portfolio)

2. Design and develop trustworthy software in the
context of an object-oriented language. (Portfolio)

3. Design and develop applications with an emphasis
on quality, maintainability, correctness and
robustness, enhancing their trustworthiness.
(Programming specification)

4. Make effective use of the Java Software
Development Kit Application Programming
Interfaces. (Programming specification)

Portfolio (50%)
Programming
specification (50%)

CTEC2711N Data Structures
and
Algorithms

1. Explain and implement a variety of classical data
structures (Practical and Phase Test 1)

2. Apply classic sequential algorithms for searching
and sorting (Phase Test 1)

3. Analyse specific programming language and library
support for the development of sequential and
concurrent programs (Practical)

4. Apply standard concurrent algorithm design
patterns (Practical and Phase Test 2)

5. Explain formal notation in specific contexts (Phase
Test 2)

Phase test 1 (25%)
Phase test 2 (25%)
Practical (50%)

CTEC2712N Web
Application
Development

1. Demonstrate a critical understanding of
information architecture, user interface design and
usability principles (phase test and web project).

2. Effectively apply knowledge of client-side web
development technologies (web project).

3. Effectively apply knowledge of server-side web
development technologies (web project).

4. Demonstrate a critical understanding of security
protocols in web applications (phase test and web
project).

Phase test 1 (40%)
Web Project (60%

CTEC2713N Agile
Development
Team Project

1. Work collaboratively with both tutor and peers
(Portfolio)

2. Produce code-based solutions to problems
generating suitable documentation (Portfolio)

3. Apply good practice in code design (Portfolio)
4. Find answers to programming problems (Portfolio)
5. Research into an area of computer ethics and

integrate different ideas into a coherent analysis of
a system, and demonstrate critical and analytical
skills in understanding the risks associated with
managing software projects (Case study analysis)

Portfolio (80%)
Case study (20%)

CTEC3701N Software
Development:
Methods and
Standards

1. Evaluate and select a methodology for developing
a common application. (Structured Proposal)

2. Assess the consequences of scaling, integration and
security in an application development. (Structured

Structured Applications
and Methodologies (60%)
Case Study Analysis (20%)
Report (20%)

Proposal)
3. Devise a plan for the adoption of an appropriate

standard within an application development
environment. (Structured Proposal)

4. Recognise and evaluate current and future ethical
issues surrounding the application of ICT. (Case
study analysis)

5. Identify, critically analyse and apply laws,
regulations and standards as found in the U.K.
thereby demonstrating a sound understanding and
ability to locate and use primary and secondary
sources. (Report)

CTEC3702N Big Data and
Machine
Learning

1. Critically evaluate Big Data, where it comes from
and what the opportunities and challenges are,
including storage infrastructures and their pros and
cons (Phase Test)

2. Develop solutions for data exploration,
visualization and analytics using suitable machine
learning frameworks such as Apache Spark.
(Problem Specification)

3. Identify and describe classification and clustering
algorithms and their application areas (Phase Test)

4. Select and apply the suite of machine learning
algorithms available in a machine learning library
e.g., Spark Machine Learning Library, to develop
solutions to machine learning problems. (Problem
Specification)

5. Research into an area of computer ethics, integrate
complex and sometimes conflicting ideas into a
coherent analysis that demonstrates integrative,
synoptic, and analytical skills. (Case Study Analysis)

Phase Test (30%)
Problem Specification
(50%)
Case Study Analysis (20%)

CTEC3451N Development
Project

1. Apply theoretical and practical concepts from the
programme of study to the construction of a
solution to a practical problem. (Initial and Final)

2. Carry out research and analysis to support the
project requirements. (Initial)

3. Plan and selfmanage the work. (Initial and Final)
4. Assess the potential global impact of the work

(Initial)
5. Present the work using a report in which the

process and product are described, analysed, and
critically evaluated. (Final)

6. Present and defend the work in a formal
demonstration (Final)

Project management
(10%)
Final Submission (90%)

CTEC3704N Functional
Programming

1. Describe and evaluate theoretical and
programming language constructs that utilise key
FP concepts, including functions as first- class
values, higher order functions, currying, partial
application, referential transparency, immutability,
function composition, strict and lazy evaluation.

Phase test (20%)
Theory paper (30%)
Practical assignment
(50%)

(Online test, Theory paper)
2. Apply formal reasoning to demonstrate specific

properties of selected expressions or functions.
(Theory paper)

3. Apply methods for constructing and transforming
lists using standard higher order functions and list
comprehensions. (Practical)

4. Apply functional programming techniques,
including, but not limited to, higher order
functions, function composition, and immutable
state, to construct a solution to a practical
problem. (Practical)

5. Justify the use of specific programming techniques
with reference to their adherence to the functional
model, and their appropriateness and/or efficiency
within a specific application area. (Practical)

CTEC3705N Advanced Web
Development

1. Ability to apply key general principles of usability,
both to guide effective design and to evaluate
existing systems. (Online Test, Web project)

2. Ability to propose and specify a suitable system
design that aligns with the cognitivecapabilities of
its target human stakeholders and fits the needs of
different users for different tasks and
environments (Web Project).

3. Ability to critically appraise the suitability of a
range of different techniques for evaluating the
usability of interactive systems for particular
systems, situations and purposes, and apply the
evaluation techniques to produce usability
evaluations. (Web Project)

4. Can design and implement a fully standards-
compliant, responsive and accessible
webtechnology-based application that is
impervious to the most common web-based
attacks. (Web Project, Online Test)

5. Can design and implement a web application that
accesses and displays data from remote web
services. (Web Project)

Phase test (40%)
Web project (60%)

IMAT3722N Fuzzy Logic and
Inference
Systems

1. To propose a solution via the creation of a fully
functioning fuzzy inference system based on a
domain chosen by the student (Coursework)

2. Acquire an in-depth understanding of a fuzzy
perspective when modelling abstract notions
(Coursework)

3. Demonstrate a sound comprehensive and
qualitative understanding and the ability to locate
and use appropriate findings from the scientific
literature (Coursework)

4. To be able to articulate, critique and evaluate on
the decision making processes adopted when

Other coursework (100%)

justifying the final configured system (Coursework).
IMAT3711N Privacy and

Data Protection
1. Display a systematic understanding of the concepts

of privacy and data protection within a multi-
cultural and multidisciplinary context.

2. Using appropriate techniques of analysis and
enquiry within this discipline recognise and
evaluate current and future threats to privacy.

3. Outline and evaluate IS professional practice with
regard to perceived professional and social
responsibilities to employers and data subjects.
Drawing upon current reseach in the field this will
lead to an appreciation of the uncertainty and
ambiguity that surrounds the role and
responsibility of IS staff in this field.

4. Research into an area of privacy and or data
protection; integrate complex and sometimes
conflicting ideas into a coherent analysis that
demonstrates integrative, synoptic and analytical
skills in accordance with the Framework for Higer
Educations Qualifications guidelines/indicators
[a,b,c&d]

Other coursework 1 (50%)
Other coursework 2 (50%)

Overview of academic prerequisites for later modules
Table 1 below shows in a schematic form which modules include learnings from which previous taught modules. So, when it for the level 5 module “Object Oriented
Design and Development” states “L4: Fundamental Concepts of Computer Science” and “L4: Computer Programming” it means that the two level 4 modules are part
of the fundament for the level 5 module and that students therefore use important knowledge from the level 4 modules in this module.

Level 4 Level 5 Level 6
Database Design and Implementation Object Oriented Design and Development

• L4: Fundamental Concepts of Computer Science
• L4: Computer Programming

Software Development: Methods and Standards
• L4: Fundamental Concepts of Computer Science
• L5: Object Oriented Design and Development

Fundamental Concepts of Computer Science Data Structures and Algorithms
• L4: Database Design and Implementation
• L4: Fundamental Concepts of Computer Science
• L4: Computer Programming
• L5: Object Oriented Design and Development

Big Data and Machine Learning
• L4: Fundamental Concepts of Computer Science
• L5: Data Structures and Algorithms
• L6: Software Development: Methods and

Standards
Computer Programming Web Application Development

• L4: Database Design and Implementation
• L4: Computer Programming
• L4: Operating Systems and Networks
• L5: Object Oriented Design and Development

Development Project
• All relevant previous modules

Operating Systems and Networks Agile Development Team Project
• In principle all the previous taught modules

dependent on the nature of the project

Functional Programming
• L4: Computer Programming

 Advanced Web Development
• L5: Web Application Development

 Fuzzy Logic and Inference Systems
• L4: Fundamental Concepts of Computer Science

 Privacy and Data Protection
• L4: Fundamental Concepts of Computer Science
• L6: Big data and Machine Learning

Table 1: How the academic prerequisites for later modules are expected to be fulfilled by the previous modules

The modules at level 4 are all basic modules and are sufficiently self-contained to not be dependent on each other. Therefore, no dependencies are listed at level 4.

